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Abstract: The glioma boundary is difficult to identify during surgery due to the infiltrative
characteristics of tumor cells. In order to ensure a full resection rate and increase the postoperative
survival of patients, it is often necessary to make an expansion range resection, which may have
harmful effects on the quality of the patient’s survival. A full-Stokes laser-induced breakdown
spectroscopy (FSLIBS) theory with a corresponding system is proposed to combine the elemental
composition information and polarization information for glioma boundary detection. To verify
the elemental content of brain tissues and provide an analytical basis, inductively coupled plasma
mass spectrometry (ICP-MS) and LIBS are also applied to analyze the healthy, boundary, and
glioma tissues. Totally, 42 fresh tissue samples are analyzed, and the Ca, Na, K elemental lines
and CN, C2 molecular fragmental bands are proved to take an important role in the different
tissue identification. The FSLIBS provides complete polarization information and elemental
information than conventional LIBS elemental analysis. The Stokes parameter spectra can
significantly reduce the under-fitting phenomenon of artificial intelligence identification models.
Meanwhile, the FSLIBS spectral features within glioma samples are relatively more stable than
boundary and healthy tissues. Other tissues may be affected obviously by individual differences in
lesion positions and patients. In the future, the FSLIBS may be used for the precise identification
of glioma boundaries based on polarization and elemental characterizing ability.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Tumors or cancers, as the frightening names, have become one of the most serious causes of death
in U. S. and even all over the world [1,2]. Although the incidence and mortality of cancer show a
certain fluctuation between different genders and different races, the overall cancer population
shows an upward trend [3]. Facing the tumors in the future, we still have many riddles need to
figure out, for example, the time of deleterious mutation pathogenic, the tumor clone should be
targeted, the right time for immunotherapy and so on [4]. However, no matter from what aspect
we face and confront the tumor, precise diagnosis is one of the key problems during the therapy
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process. Among these cancers and tumors, the brain tumor is a special one that need to pay
attention on the precise diagnosis due to the lesion position.

Even though the brain tumor doesn’t show a high disease incidence compared with other tumor
types, brain and other central nervous system (CNS) tumors are indeed among the most fatal
cancers and account for substantial morbidity and mortality [5]. That’s mainly due to the brain
and CNS play a great role in control the normal operation of human body functions. In the past
years (statistics from 2008 to 2017), through the development of medical technology and the
popularization of popular science knowledge, the overall malignant brain tumor incidence has
become stable and even slightly declined, but incidence of children and adolescents increased
0.5% to 0.7% per year [5]. Among all of the brain tumor kinds, the glioma takes nearly more
than half of the malignant ones and is famous for the infiltrative characteristics [6]. Tumor cell
infiltration grows into the surrounding healthy tissue, which directly causes a dilemma about the
identification of tumor boundaries during the surgery to maximize tumor excision and minimize
postoperative neurological damage. In order to improve the total tumor excision precisely, some
methods like image-based navigation, intraoperative sampling, electrophysiological monitoring,
and enhanced visual tumor demarcation have been proposed to implement in clinical [6]. With
the help of magnetic resonance imaging (MRI) is already a widely used technology in medicine,
the positron emission tomography (PET) / MR neuroimaging was used for accurate delineation
of glioma infiltration [7]. Even this is commonly used in the hospital, the boundary of the image
is not clear. So, some image enhanced technologies are proposed to improve these methods.
In 2018, Non-Sub sampled Contourlet Transform (NSCT) method was proposed to enhance
the brain image and also the more representative texture features could be extracted from the
enhanced brain images [8]. The efficiency has been proved on some public datasets. Besides the
data transform, the pixel segmentation is also a major way to improve the image identification
ability. In 2019, the adaptive superpixel generation algorithm was proposed for automatic glioma
segmentation from the T2 weighted MRI [9]. It is not enough to meet the clinical practical
diagnostic standards only from the perspective of improving the existing image technology, so
introducing new information is an inevitable trend. For instance, the field potentials recording in
the brain tissue has been proposed as a new criterion for determination of glioma boundaries [10].
Although there are many new criteria, the establishment of a clear connection between them with
the physical mechanism of the tumor needs further research. Meanwhile, the equipment such as
intraoperation MRI and PET are also expensive, and the maintenance consumption cannot be
ignored either. Therefore, many spectral techniques have been regarded as an important prospect
in this field.

The spectral techniques can provide the physical information of tumor from different perspec-
tives. The fluorescence has been verified to be related to some specific biomarkers, for instance,
5-aminolevulinic acide induced protoporphyrin IX (PpIX) fluorescence can be applied for guiding
the glioma surgery because the PpIX accumulated in normal brain cells is significantly less than
in glioma cells [11]. However, there is a difference between the yellow fluorescence boundary and
the actual boundary of the tumor in high-grade glioma, and the fluorescent signal will obviously
weaken with the extension of the operation time [12]. Meanwhile, the novel fluorescent probe
with other biomarkers cannot avoid these issues completely either [13]. The protein secondary
structure can introduce different Fourier transform infrared spectroscopy (FTIR) signals, so
the FTIR was also used to investigate the morphological and biochemical properties of human
astrocytes, microglia, glioma cells, and glioblastoma cells [14]. Indeed, the 4 types of cells could
be clearly separated with principal component analysis (PCA), but there are obvious differences
in identifying the cultured pure cells and real tissues in the operation. The Raman spectroscopy
peaks can directly represent the molecular bond information of the measuring sample. Due
to the weak signal, the surface-enhanced Raman scattering (SERS) strategy was developed
for the rapid identification of glioma boundaries [15]. The sensing chip composed of silver
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nanoparticles self-assembled film was used to enhance the Raman signal. Similar to this, the
nano particles enhanced technology has been also used in phototheranostic nanoprobe [16]. The
phototheranostic nanoprobe enabled fluorescence, photoacoustic, and infrared thermal imaging
with desirable detecting depth and high signal-to-background ratio (SBR) for differentiating brain
tumors from surrounding tissues. However, the use of markers introduced exogenous substances
to the human body. The impact of the exogenous and the time required for metabolism are
incomplete understood. Biomarkers need a process to produce effects in the human body, and
the duration will also be affected by individual differences. Based on these considerations, no
marked techniques will be a trend of new diagnostic methods.

As the popular novel no exogenously marked techniques, the hyperspectral imaging (HSI) and
Terahertz (THz) technologies have been conducted in the glioma boundary detection [17–19].
Due to the specific frequency, THz technology has shown great potential in molecular marker
detection and can be applied in the identification of glioma boundary [17]. Nevertheless, the
border of the THz imaging is still unclear, and the THz source is a bit expensive, which causes that
the actual application still takes a long time. The HSI also confronts this illegibility problem of
the image boundary and the relationship between HSI signal and physical chemistry mechanism
is still not definite.

Compared with all these methods, laser-induced breakdown spectroscopy (LIBS) has shown
potential tissue analysis ability based on advantages of the micro-damage, real-time, multi-element
and molecular band analysis at the same time [20,21]. Recent years, the LIBS technique has
been conducted in biomedical field like discriminating neoplastic tissues from non-neoplastic
ones [22]. Based on the excellent chemical composition recognition ability, researchers have
applied this technique in lung cancer [23], myeloma [24], ovarian cancer [25], parathyroid gland
[26], and gastrointestinal stromal tumor [27]. Even by combining quantitative methods, the LIBS
can be used to determine the content of different metal elements in nails and hair [28].

The element components of different tissues are also different, so LIBS provide a potential
tumor boundary judgment method, and it has been applied for the skin tumor margin like
melanoma tissue [29,30]. Since 2020, the LIBS has been proposed to detect the glioma infiltrative
boundary and combined with chemometrics and machine learning methods, the LIBS have
achieved significant effect on identification of glioma and boundary tissue [31–33]. However, the
glioma is different from other tumors due to its infiltrative characteristics. The tumor, boundary
and healthy tissues should all be identified during the surgery. Due to the different degrees of
infiltration, the proportion of cancer cells and normal cells contained in the boundary tissue is
also different. It is difficult to identify the tissues precisely just based on the element component
reflected by LIBS spectra. Therefore, it is an inevitable trend to introduce new information
dimension.

Considering the retaining element information and exploring the light polarization of induced
plasma, we propose to use full-Stokes laser-induced breakdown spectroscopy (FSLIBS) method
for glioma detection. The degree of polarization (DoP) has been used in the LIBS measuring
techniques [34], but the DoP can only represent limited polarization information. The Stokes
parameters can represent the whole polarization state of the detected light signals and carry more
information to characterize the surface roughness or other features [35,36]. The Stokes features
have been used in HSI techniques recent years and show its advantages to some extent [37]. In
this work, the FSLIBS system is proposed to get full-Stokes information of the induced plasma.
To verify the elemental composition of the glioma, boundary and healthy tissue, the inductively
coupled plasma mass spectrometry (ICP-MS) and LIBS are also used during the analysis and the
identification results are compared.
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2. Materials and methods

2.1. FSLIBS theory

Various polarization state of monochrome plane light waves can be represented by Stokes
parameters (S0, S1, S2, S3). Among them, S0 represents total light intensity, S1 represents the
linear polarization component in horizontal direction, S2 linear polarization component in vertical
direction, S3 represents circle polarization information in right rotation. As the Eq. (1), the
relationship between the four Stokes parameters can be expressed according to the S component
ES, P component EP, and phase difference δ of the light.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
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In Eq. (1), the ES(t) reflects the timely function of S component in light, which reflects the
light with the vibration direction in the incident surface. the EP(t) reflects the timely function of
P component in light, which reflects the light with the vibration direction vertical to the incident
surface.

It is very difficult to directly measure the phase, so the Stokes parameters are calculated by
the intensity measurements. As shown in Fig. 1, by detecting the emission light modulated by a
quarter-wave plate (QWP) and a polarizer, the polarization information can be demodulated.

Fig. 1. The principle of Stokes parameter measurement.

The Mueller matrix reflects the integral polarization information of the light. All the waveplates
can be recognized as the linear delayer, and the specific parameters depend on the crystal materials
and phase delay. In order to understand the function of the QWP, the linear delayer is first
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mentioned. The Mueller matrix of linear delayer is illustrated as Eq. (2),

MR =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 cos2(2θ) + cos(δ)sin2(2θ) cos(2θ) sin(2θ) − cos(2θ) cos(δ) sin(2θ)

0 cos(2θ) sin(2θ) − cos(2θ) cos(δ) sin(2θ) cos(δ)cos2(2θ) + sin2(2θ)

0 − sin(2θ) sin(δ) cos(2θ) sin(δ)

−

0

sin(2θ) sin(δ)

− cos(2θ) sin(δ)

cos(δ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 cos2(2θ) cos(2θ) sin(2θ) p sin(2θ)

0 cos(2θ) sin(2θ) sin2(2θ) −p cos(2θ)

0 −p sin(2θ) p cos(2θ) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

where the δ represents the phase delay and p is a related numerical parameter (the value is 1 and
the sign depends on the crystal material). As a positive crystal, the δ of QWP used in this work is
-π/2, and p is -1. The θ (0° ≤ θ ≤ 180°) is the fast axis angle, which represents the angle between
the fast axis of QWP and the x-axis. The Mueller matrix of QWP is shown as Eq. (3) and the
polarizer one is shown as Eq. (4),
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where the α (0° ≤ α ≤ 180°) represents the angle between the transmitted axis of the polarizer
and the vertical direction. The combined Mueller matrix of the system is as Eq. (5).

M(α,θ) =MLP × MQWP =
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2
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(5)

Given the incident light vector of Stokes parameters as Eq. (6), the modulated light will be as
Eq. (7).

P = (S0, S1, S2, S3)
T (6)

Pm =MLP × MQWP × P =Mtotal × P (7)

Adjusting the angles of QWP and polarizer, the Mueller matrixes of four sets of angles are
illustrated as Eq. (8)–(11).
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M(0◦,0◦) =
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Based on these Mueller matrixes, the Stokes parameters can be calculated as Eq. (12).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0 = I(0◦, 45◦) + I(0◦, 135◦)

S1 = 2I(0◦, 0◦) − (I(0◦, 45◦) + I(0◦, 135◦))

S2 = 2I(45◦, 45◦) − (I(0◦, 45◦) + I(0◦, 135◦))

S3 = I(0◦, 45◦) − I(0◦, 135◦)

(12)

2.2. FSLIBS experimental measuring setup

Based on the theory in Section 2.1, the FSLIBS setup for glioma samples detection is illustrated
in Fig. 2. Among the system, a flash-pumped Q-switched Nd: YAG laser (1064 nm, 1 Hz, τ= 5 ns,
Ø6 mm, optimized to 30 mJ/pulse) is used to excite the tissues. Considering the inconvenience
brought by the invisible infrared laser, a He-Ne laser (λ= 632.8 nm) is used as pointing laser to
calibrate the optical path. To optimize the experimental parameters, the laser energy is adjusted
by a half-wave plate (HWP) and a polarization prism. Then, the pulse energy is monitored by
an energy meter (PE50BF-C, Starlite, Ophir). During the experiments, the fluctuation of the
laser energy is less than 2%. The laser propagation direction is changed through three reflected
mirrors and finally focused on the sample surface by a 10× near-infrared correction objective (M
Plan Apo NIR, Mitutoyu).

Fig. 2. Schematic of the FSLIBS experimental setup.

Then for the spectral collection part, the plasma radiation is collected by two convex lens
(focus length: 75 mm and 50 mm) and transfer into a two-channel fiber spectrometer (AvaSpec
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2048-2-USB2, Avantes, 190∼1100 nm, 0.2∼0.3 nm). A superachromatic QWP (SAQWP05M-
700, Thorlabs, 325∼1100 nm) and a Glan prism (GCL-070214, Daheng Optics, 220∼2500 nm)
are added between the two lenses to modulate the plasma spectra. A COMS camera (ME2L-
161-61U3M, Daheng Imaging) is used to observe the focus point on the sample and the white
LED provides a bright vision. External trigger used in the system include a photodetector and
a digital delayer (SRS-DG535, Stanford Research System). The spectrometer is triggered by
DG535 after a preset delay time. In order to achieve a good signal-to-background ratio, the
spectral acquisition delay time and the integration time are optimized to 1.29 µs and 2 ms.

2.3. Glioma samples detection

In this work, glioma, boundary, and healthy tissues were obtained from department of neuro-
oncology of the hospital after routine tumor surgery. The study was approved by the ethics
committee at the Kunming Sanbo Brain Hospital (Kunming, China, April 2020). Due to the
samples we used are all high-grade gliomas, the removal area has been expanded to a certain
extent to avoid recurrence. So, a little normal tissue can be collected. The 36 samples were
collected from 6 patients (18 for the LIBS and 18 for the FSLIBS detection) and the specific
information as listed in Table 1. Both routine pathological diagnosis and molecular gene diagnosis
were conducted to the corresponding samples from these patients and made sure the accurate
prior diagnostic results as glioma.

Table 1. The information of patients and samples for the LIBS and FSLIBS detection

Sample Index Pathological attribute Patient index Gender Age

1, 19 Healthy
1 Female 472, 20 Boundary

3, 21 Glioma

4, 22 Healthy
2 Male 565, 23 Boundary

6, 24 Glioma

7, 25 Healthy
3 Female 628, 26 Boundary

9, 27 Glioma

10, 28 Healthy
4 Male 2511, 29 Boundary

12, 30 Glioma

13, 31 Healthy
5 Male 3614, 32 Boundary

15, 33 Glioma

16, 34 Healthy
6 Male 1517, 35 Boundary

18, 36 Glioma

All the samples were preserved at -80℃ after the surgery until the LIBS measurement. The
main difference between LIBS biological tissue measurement and conventional hard sample
detection is the sample form. Due to the soft texture and the residue of blood and tissue liquid on
the surface, the laser energy is difficult to be coupled for exciting the tissue sample. The liquid
will also absorb heat and cause the temperature of the plasma to decrease, resulting in weak
spectral signals. Therefore, the samples were put on the glass slides and were blew by the heat
wind for 5 seconds from a distance at 25 cm. The representative samples were shown as Fig. 3.
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Due to the different size of each tumor, the number of spectra available for each tumor was also
different. Every spectrum was detected at a new spot and after filtering the spectra ablated the
substrate, the LIBS spectra and FSLIBS spectra were used for the following analysis.

Fig. 3. The representative samples of patient 1 (a: healthy, c: boundary, e: glioma) and
patient 2 (b: healthy, d: boundary, f: glioma).

In order to verify the elemental composition of the glioma and related tissues, another 6
samples were collected from the patient 1 and 2 for the ICP-MS measurement. A commercial
ICP-MS system (ICP-MS 7800, Agilent) was used for the detection. The samples were digested
for the analysis and the information were listed in Table 2.

Table 2. The information of samples for ICP-MS measurement

Index Sample Digestion volume(mL) Sample mass(g)

1 Patient 1 healthy 10 0.1137

2 Patient 1 boundary 10 0.3574

3 Patient 1 glioma 10 0.4011

4 Patient 2 healthy 10 0.1092

5 Patient 2 boundary 10 0.1262

6 Patient 2 glioma 10 0.3409

3. Results and discussion

3.1. ICP-MS elemental analysis of glioma

The ICP-MS scanned 65 kinds of elements during the detection, and the detection contents
of the main elements (content> 0.1 mg/kg) were listed in the Table 3. Take an example, the
elemental composition of sample 1 is shown in the Fig. 4. Because mass spectrometry detection
methods cannot measure the main components of organic elements like C, H, O, etc., the non
-metallic element P expressed the highest content as an important component of organic element
in organisms such as protein and phospholipids. The following high content is Na and K elements
that have important regulatory effects on the infiltration balance and acid-base balance in the
body. This result is consistent with the prior knowledge of biology, so the detection results of
ICP-MS can be used to verify the content of glioma and related tissues.

The Table 3 illustrated 4 kinds of non-metallic elements (B, Si, P, Se) and 12 kinds of metal
elements (Na, Mg, Al, K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb). The comparisons between two patients
in non-metallic and metal elements are shown in Fig. 5 and Fig. 6, respectively.
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Table 3. The main elements and contents of 6 samples detected by ICP-MSa

Elemental content Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

B (mg/kg) 0.4559 0.1705 0.1359 0.4523 0.3882 0.1322

Na (mg/kg) 2201.2397 1872.0753 2674.3452 2792.7722 2828.8006 2838.1862

Na[He] (mg/kg) 1976.7608 1729.7505 2318.9342 2518.0385 2464.8970 2431.5551

Mg (mg/kg) 97.6021 163.7647 116.6566 145.9745 115.4270 103.5068

Al (mg/kg) 2.5203 0.7745 2.2756 2.9471 2.6110 0.7720

Si (mg/kg) 20.4042 10.6644 12.6464 40.2759 35.4712 13.9727

P (mg/kg) 2326.3988 5317.0617 2856.3578 3799.9448 3610.7830 1996.7571

K (mg/kg) 1651.8313 2604.8627 1784.4184 2176.9431 1134.8757 1664.3606

Ca (mg/kg) 53.5636 72.8805 109.0821 82.7004 75.9163 206.2334

Ti (mg/kg) 0.8287 1.7082 0.9326 1.3213 1.2449 0.6307

Cr (mg/kg) 0.6533 0.5125 0.4950 0.9872 0.8229 0.4319

Mn (mg/kg) 0.2990 0.3569 0.5905 0.4593 0.3902 0.4027

Fe (mg/kg) 65.9780 63.4802 170.7352 90.7354 65.0089 515.0495

Cu (mg/kg) 5.4053 4.9431 3.2218 5.8527 3.8914 3.5088

Zn (mg/kg) 9.2308 8.9996 9.0796 12.9086 7.3278 14.7785

Se[He] (mg/kg) 0.1284 0.1353 0.1429 0.1955 0.1136 0.1880

Rb (mg/kg) 2.0961 3.8054 3.4992 2.8844 1.9147 3.3745

a[He]: The measurement in the helium atmosphere. Other measurements are in the vacuum.

Among the non-metallic elements, B shows the same changing trends in the two patients for the
three kinds of tissues. From normal tissue to tumor tissue, the content shows a trend of decrease.
But in general, the content of B in the human body is relatively low, and the concentration of
all samples does not exceed 0.5 mg/kg. For Si, the content of tumor areas is lower than normal
tissue, but the content of boundary tissue is unstable. It is difficult to identify the tumor boundary
according to Si. Because the infiltration characteristics of glioma are slightly different due to the
specific growth of the tumor, the infiltration ratio of cancer cells in the different tumors and even
different positions of the same tumor may be different. This may also be one of the reasons for
the unstable elemental content. The P content is extremely high, which is mainly related to its
participation in the phosphate buffer mechanism in the blood [38]. As a result of this, bleeding

Fig. 4. The main elements and contents of glioma scanned by the ICP-MS.
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Fig. 5. The main non-metallic elements content comparison in patient 1 and 2 (B, Si, P, Se).

Fig. 6. The main metal elements content comparison in patient 1 and 2 (Na, Mg, Al, K, Ca,
Ti, Cr, Mn, Fe, Cu, Zn, Rb).
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during the operation and exudation of tissue fluid will both have important impacts on the content
of the P element. The Se also doesn’t show an obvious trend.

Among the metal elements, Na, Mg, K, Ca, and Fe are common elements in biological tissues.
The Cr and Cu contents in the three types of tissues of the two patients are relatively consistent.
From normal tissue to tumor tissue, the contents of both elements show a decreasing trend. The
Cu participates in the synthesis of many enzymes in the human body and acts as an important
component of the brain neurotransmitters [39]. The lack of Cu will lead to reduced pigment
oxidase in the brain cells. In severe cases, it may even lead to symptoms such as unstable gait.
Some glioma patients also show similar symptoms to a certain extent, which can speculate that
the glioma may cause the Cu content level to decrease in the lesion. Although Cr is an important
trace element of the human body, the overall content is extremely low, and the measurement
bias may cause the trend between the two patients not universal. The Fe ions are the main
hematopoietic raw material in the human body, and it is also the main component of hemoglobin.
The growth of cells in the tumor area requires more nutrients and requires more blood supply, so
the amount of Fe will also increase [40]. The Ca content in the tumor area is higher than the
normal brain tissue area, which is consistent with the calcification phenomenon that occurs in
many tumors [33]. The Na and K contents are extremely rich, but at the same time, it is also
susceptible to interfering blood and interstitial fluid [38]. Different osmotic pressure will also
affect the flow direction of the interstitial fluid. Although we do not have a good consistency
ICP-MS conclusion on Na or K here, it is undeniable that as a rich metal element, it may still
play an important role in the diagnosis. In order to further analyze the relationship between
different elements, the measured elemental concentration is compared with each other, and the
concentration rate with the same trend between two patients is listed in Table 4. Among them,
8 groups are related to Ca. Although the standards of tissue elements difference cannot be
summarized from the consistency of the two patients, the Ca is still an important element that
characterizes the differences in glioma boundary.

Table 4. The concentration ratio with the same trend between two patients.

Index Elemental rate Index Elemental rate Index Elemental rate

1 B:Na 11 P:Ca 21 Ti:Cr

2 B:Si 12 P:Mn 22 Ti:Mn

3 B:Ca 13 P:Fe 23 Ti:Fe

4 Na:Si 14 P:Rb 24 Ti:Rb

5 Na:Ti 15 K:Rb 25 Cr:Mn

6 Na:Cr 16 Ca:Ti 26 Mn:Fe

7 Mg:Ti 17 Ca:Cr 27 Mn:Cu

8 Mg:Fe 18 Ca:Fe 28 Fe:Cu

9 Al:P 19 Ca:Cu 29 Zn:Rb

10 Si:Ca 20 Ca:Zn

3.2. LIBS elemental and molecular analysis of glioma

The LIBS spectra of the corresponding samples from patients 1 and 2 are shown in Fig. 7.
Although there are large differences in the whole spectra of same tissues from these two
representative patients, some spectral peaks maintain stability. We can recognize 13 elemental
peaks of 6 elements, which are listed in Table 5. In all tissues, the intensities of Na peaks are
obviously high, which is consistent with the prior knowledge of Na maintained the infiltration
balance in the body and the ICP-MS detection results. In these examples, the Ca intensities are
significantly weaker in boundary tissues than tumor and normal tissues. Meanwhile, multiple
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spectral lines corresponding to each element may be seen in the LIBS spectrum. Therefore,
different spectral lines of the same element should be analyzed separately. In tumor tissue, the
proportion of Na and K intensities has maintained better consistency, forming a certain difference
with healthy and boundary tissues. In order to further analyze the relationship between different
elemental lines, the measured line intensity is compared one by one, and the intensity rate with
the same trend between two patients is listed in Table 6. All the four sets of rates are related
to Ca and Na. Although the element of consistency is different with ICP-MS, they both shows
the important role of Ca in characterizing the tissue. Since the sample is consumable in the
detection, ICP-MS detection and LIBS detection have not analyzed the same sample. But the
sample originated from the same operations of the same patients.

Fig. 7. The averaged LIBS spectra of different tissues from patient 1 and 2.

Table 5. The LIBS elemental lines and corresponding
wavelengths.

Elements Wavelengths (nm)

Mg 279.1, 279.8

Ca 393.4, 396.8, 422.7

Na 589.0, 589.6, 818.3, 819.5

H 656.3

K 766.5, 769.9

O 777.4

In the LIBS detection, in addition to the elemental lines of atoms and ions, there are also
some molecular fragmental bands that cannot be ignored. The molecular bands have been used
in the LIBS analysis and been considered as reliable biological tissue detection marks [32,33].
As the detection spectra shown in Fig. 7, the CN and C2 bands also appeared. The measured
LIBS molecular bands are listed in Table 7. Experiments are performed in the atmospheric
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Table 6. The LIBS elemental line rates with the same trend between two
patients.

Index LIBS elemental line rate

1 Ca (393.4 nm) : Na (589.0 nm)

2 Ca (396.8 nm) : Na (589.0 nm)

3 Ca (393.4 nm) : Na (589.6 nm)

4 Ca (396.8 nm) : Na (589.6 nm)

environment, so the measured C and N elements may not only come from the sample, but also
may be derived from the environmental atmosphere.

Table 7. The LIBS molecular bands and corresponding wavelengths

Molecular band Central wavelength (nm) Containing lines (nm)

CN(1,0) 358.4 358.4

CN(0,0) 384.0 384.6, 385.7, 386.5, 388.0

C2(0,0) 516.8 516.8, 517.9

C2(0,1) 558.5 558.5

The C in the air mainly comes from the weak CO2 content (0.03%∼0.04%). The content
proportion is extremely low, and the contribution to the spectral signal is weak. Relatively
speaking, the N element is high in the air, and it does contribute to the ingredients in the CN
bands, but the nitrogen content in the atmosphere is relatively stable, and the impact on different
samples is relatively uniform. Therefore, the molecular bands can still reflect the composition
and the interaction between the sample and laser [41]. The intensities of the molecular bands
are lower than that of the rich metal elemental spectral lines, and the measured fluctuation is
large. Among the 3 kinds of tissues from the two patients, there’s no consistency trend in single
molecular band. Therefore, compared the intensity of 8 lines in these bands one by one, all ratios
with consistent trends are listed in Table 8. Although the consistency showing between two
patients cannot be used as the standard for tissue identification, to a certain extent, it has proved
that the CN and C2 molecular bands may provide a basis for glioma boundary identification.

Table 8. The LIBS molecular band line rates with the same trend between two
patients

Index LIBS molecular band line rate

1 CN (358.4 nm):C2 (558.5 nm)

2 CN (384.6 nm):CN (388.0 nm)

3 CN (384.6 nm):C2 (517.9 nm)

4 CN (385.7 nm):CN (388.0 nm)

5 CN (385.7 nm):C2 (517.9 nm)

6 CN (386.5 nm):C2 (517.9 nm)

7 CN (388.0 nm):C2 (517.9 nm)

For the LIBS measurements, the spectral numbers collected from 18 samples are listed in
Table 9. The spectral data from each patient has a certain fluctuation. There are two main
reasons for the differences in line intensity and data distribution of these tissues. The first one
is the individual differences of each patient cause the difference in tissue components not only
related to the tumor, but also affected by the patient’s habits. The other one is heterogeneity
of the tumor tissue, so the tissue sample parts for pathological detection and LIBS detection



Research Article Vol. 14, No. 7 / 1 Jul 2023 / Biomedical Optics Express 3483

has a slight difference in malignant ratio [42]. Therefore, direct identification from the spectra
is significantly difficult. The machine learning methods have been used in the pathological
diagnosis recent years and perform well-known ability [43,44]. We applied several machine
learning and deep learning methods for the glioma LIBS spectra identification. For instance,
k-nearest neighbor (k-NN), support vector machine (SVM), soft independent modeling class
analog (SIMCA), random forests (RF), artificial neural networks (ANN), and spiking neural
network (SNN). In order to ensure the training of the model, only 3 samples from one patient
(patient 4) were selected as the source of the testing set due to the small number of patients, and
the samples of other five patients were used as the source of the training set. The identification
accuracies are shown in Fig. 8.

Fig. 8. The identification accuracies and ROC curves of different models.

Table 9. The number of LIBS spectra collected from 18 samples

Sample index Spectral number Sample index Spectral number Sample index Spectral number

1 63 7 60 13 39

2 47 8 59 14 52

3 59 9 54 15 47

4 64 10 29 16 52

5 66 11 55 17 44

6 68 12 68 18 46

The identification accuracies of neural network models are better than other models with LIBS
spectral features. Especially the SNN model, even achieved the accuracy of 98.68%. This is
mainly due to large data fluctuations hinder the ability to learn effective data characteristics of
the traditional machine learning models. However, during an in-depth investigation of SNN, it is
found that the accuracy of training set is low, only about 60%. This is due to the large differences
in the training set data itself. In the pulse training process of SNN, data relationship is not fully
learnt and instead the overfitting phenomenon is avoided. The receiver operating characteristic
(ROC) curves are also showed in Fig. 8. For the six kinds of the identification models (k-NN,
SVM, SIMCA, RF, ANN and SNN), the area under the curve (AUC) values are 0.75595, 0.69538,
0.50079, 0.60049, 0.67358 and 0.97365, respectively. Balanced training is a major advantage
of the SNN model, but the large deviation also indicates that the model training is incomplete.
Although the AUC of SNN is high, considering the predictive difference between training and
test sets, the model is not trained completely. So, the high accuracy of the test data prediction is
some kind of accidental phenomenon. Therefore, it can’t be said that LIBS has achieved great
identification effects in a strict sense, and still new information needs to be introduced.
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3.3. FSLIBS analysis of glioma

The 18 samples from the same 6 patients were collected for the FSLIBS measurement. Four
measurements are needed to be conducted to demodulated Stokes parameter spectra, but during
the LIBS detection process, it is difficult to guarantee that each excitation is exactly the same.
Therefore, to ensure that the accuracy of the demodulation is as high as possible, the similarities
of the measurement spectra need to be improved. For the set of four modulation angles, 100
spectra were measured for each sample, and the most similar 50 items are selected as the spectra
at the set of modulation. The Stokes parameter spectra can be calculated by Eq. (12) based on
the four measurement spectra at these modulated angles. The average spectra of the FSLIBS of
the healthy tissue, boundary tissue and glioma tissue are shown in Fig. 9, Fig. 10, and Fig. 11,
respectively. S0 stands for intensity information of light, and its spectral lines are also highly
similar to the intensity spectra measured directly. The values of the three parameters of S1,
S2, and S3 are significantly smaller than the intensity information, which is consistent with the
results of theoretical calculation analysis. The influence of different modulation angles on the
amplitude of the intensity fluctuations of the measuring spectrum is not very large. Therefore,
through the reduction between the two measurement spectra, the generated difference spectral
intensity will become significantly smaller in terms of value. Most of the FSLIBS lines are still
corresponding to the LIBS lines, but indeed a small number of new spectral peaks appear at
different wavelengths from the original lines. This is due to the details not reflected during the
intensity measurement will be enlarged in the differential spectra. In addition, the differential
spectra contain both positive and negative peaks due to the subtraction process.

Fig. 9. The average FSLIBS spectra of healthy tissue.

Compared with healthy tissue, the intensity information S0 of the boundary tissue does not show
obvious differences, but some of the peak differences in the other three parameters are obvious.
For example, in the S1 parameter spectrum, the calculated value at Na I 589.0 nm changes to
negative, which may can supplement important difference information for the identification
process. The average FSLIBS spectra of the glioma tissue is different from the previous two
kinds of tissues. Although the intensity signal S0 is extremely similar, the S1 parameter does not
show negative spectral peaks, which basically maintains the shape of the original LIBS spectra.
Meanwhile, even though the intensity of the S1 lines is significantly weaker than the S0 lines, the
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Fig. 10. The average FSLIBS spectra of boundary tissue.

Fig. 11. The average FSLIBS spectra of glioma tissue.
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SBR has not weakened significantly. This indicates that the trend of each spectral line intensity
between the two measurements that are used for the subtraction is unified. However, the difference
between a small number of spectral lines cannot be used directly as a basis for identification.
Through the subtraction, the value order of the last three parameters obtained is significantly
reduced compared with the measured spectral intensity, and the random fluctuations that show in
intensity may be relatively amplified. Therefore, the differences and stability both need to be
considered in FSLIBS spectra. The numbers of spectral lines identified in the four parameter
spectra of S0, S1, S2, and S3 are different, including 52, 39, 43, and 34 peaks, respectively. Using
the same identification models as Section 3.2, the highest accuracy achieved 65.33% with S0
spectra and the SNN model. The accuracies of S1, S2, and S3 spectra and the SNN model are
52.00%, 55.33%, and 56.00%, respectively. Although the identification accuracy is decreased
compared with the LIBS intensity spectra, the accuracy of the training set and the test set is
relatively balanced. The S0 spectra and the original LIBS spectra both reflect the intensity
information, but the process of multiple measurement and demodulation calculation introduces
some fluctuations, making the difference of data distribution between the training set and the test
set smaller.

Besides the identification, the unsupervised clustering method K-means is introduced for the
analysis of FSLIBS spectra. The clustering results of FSLIBS spectra are shown in Fig. 12. For
all four parameter spectra, the healthy and boundary tissues are distributed in all three predicted
categories. Although the difference in axonal density and protein/lipid ratio has been proved in
glioma, infiltrative and healthy brain tissue [45], the low proportion of cancer cells contained in
the boundary tissue makes the difference of overall component between the health and boundary
tissue is not large enough to distinguish. Meanwhile, due to individual difference of patients in
the non-lesion area, the distribution of these two kinds of tissue doesn’t have regular pattern,
which make it cover all the predicted types. In the S0, S1, and S3 parameter spectra, nearly all
the glioma samples are clustered into one class. It reflects that the FSLIBS spectral difference
within glioma samples is relatively small. Tumor is the main cause of changes in the elemental
composition of the lesion region [22]. The influence of glioma on tissue composition is more
obvious than internal differences between different patients.. Furthermore, the clustering results
of glioma samples based on S0 and S3 parameter spectra are coincidentally just the opposite.
In the S3 spectrum, the value of specific lines at around 422 nm, 589 nm, 769 nm and other
wavelengths are negative, but the trend of the absolute value among these lines is similar. These
spectral lines are related to Ca, Na and K elements and act an important role in the identification.
The change of these key spectral lines may be the main reason for the exchange of predicted labels.
Comparing the S1 and S2 parameter spectra, the clustering results are more dispersed, especially
for the S2 parameter. This indicates that the spectral information in the two different linear
polarization parameters has great randomness. The polarization of spectral lines is independent
of the polarization direction of laser. The randomness of the linear polarization direction is
more obvious than the linear polarization degree. Oppositely, the trend of circular polarization
information at the key spectral lines are the same as the spectral intensity changing trends. In
the laser-induced plasma, even the spectral lines of the same element, the polarization status of
the lines generated between different energy levels of transition is different [46]. This is also
reflected in the detected circular polarization spectral information and the circular polarization
information is more dominant in the entire spectral polarization information. Furthermore, the
polarization state is also directly related to the position of the detection focus distance and further
experimental research is needed in this field.

Although the tumor cannot be completely identified, in contrast, the similarity within the
glioma category can be characterized. In the future, the FSLIBS may can be used for the precisely
identification of glioma boundary based on the characterizing ability of plasma polarizing
information.



Research Article Vol. 14, No. 7 / 1 Jul 2023 / Biomedical Optics Express 3487

Fig. 12. The clustering results of FSLIBS spectra.

For the FSLIBS system, both the light intensity information and polarized phase information
can be characterized. The intensity signal reflects the elemental composition content, and the
polarization signal reflects the surface texture of the sample. Based on the preliminary conclusion,
the polarization information is much stable in the tumor. Combined with the polarization
information, the under-fitting phenomenon of the identification models can be solved to some
extent. However, not all the samples will have stable polarization signal, sometimes it may cause
the bias influence on the identification model and more experiments need to be carried out to
verify the phenomenon.

For the standard LIBS technique, only the intensity information of the plasma emission can be
detected. The less information can be obtained. Therefore, the detected LIBS signal is much
stable, as no calculation process are needed.

4. Conclusions

In this paper, we built a FSLIBS system for the modulation and demodulation of full-Stokes
parameters in laser-induced plasma and applied for the biomedical tissue measurement. The
elemental information and full-Stokes polarization information are combined in the FSLIBS
signals and shows a potential ability to characterize the glioma lesion tissue. In order to verify the
elemental composition of glioma and corresponding boundary and healthy tissue, the ICP-MS
was used for analysis. Combined with the LIBS elemental and molecular fragmental analysis,
the Ca, Na, K lines and CN, C2 bands are recognized as important features for the identification
in LIBS. The FSLIBS further introduces some other subtle peaks not appeared in the intensity
spectra. The FSLIBS spectra haven’t shown obvious improvement on the identification accuracy,
but it can indeed reduce the under-fitting phenomenon of the identification models. It can be seen
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from the unsupervised cluster labels that the clusters of the glioma are relatively stable, while the
other two kinds of tissue distributions are scattered. The FSLIBS reveals that the polarization
characteristics of the laser-induced glioma plasma may be relatively stable.

Meanwhile, although the Stokes parameters show the potential ability of increasing spectral
differences, there is still a certain gap of FSLIBS from the application. The demodulation process
of the four measurements is highly rely on the stability of the plasma emission, but due to the
unevenness of the sample components and the fluctuation of laser pulse energy, it is difficult
to avoid the fluctuation of the FSLIBS spectra. Although the effects of fluctuations have been
weakened to a certain extent through spectral similarity filtering, more comprehensive measures
are still needed to solve this problem. In addition, although the polarization mechanism in
previous experience is considered to be related to the Fresnel reflection, the relationship between
polarization mechanism and sample surface characteristics and the differences of polarization
characteristics in each spectral peak need to be further clarified.
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